Altai State University

Discipline '"Numerical Methods in Physics"

Lecture 4. Spline interpolation

Shevchuk Evgeniya Petrovna, Senior Lecturer, Department of General and Experimental Physics, Institute of Digital Technologies, Electronics and Physics

Methods for setting functions

1. Analytical
2. Tabular
3. Graphic

Buckley-Leverett function (fraction of water in the stream)
S - water saturation
η - the ratio of the viscosities of water and oil

$$
F(S)=\frac{S^{2}}{S^{2}+\eta(1-S)^{2}}
$$

Interpolation problem

Interpolation, interpolation is a method of finding intermediate values of a quantity from an available set of known values. The values of the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ are known only at these points

$$
y_{i}=f\left(x_{i}\right), i=1, \ldots N
$$

The interpolation problem is to find such a function F from a given class of functions that $F\left(x_{i}\right)=y_{i}, i=1, \ldots N$
Points x_{i} are called interpolation nodes, and their totality - by an interpolation grid.
Pairs x_{i}, y_{i} called data points or base points.
Difference between "adjacent" values $\Lambda_{i}=x_{i}-x_{i-1}$ - step of the interpolation grid. The step can be both variable and constant.

Function $F(x)$ called interpolation function or interpolant.

Interpolation function

Interpolation example

Piecewise linear interpolation

Equation of a straight line passing through $\left(x_{i}, f\left(x_{i}\right)\right),\left(x_{i+1}, f\left(x_{i+1}\right)\right)$

$$
\frac{y-f\left(x_{i}\right)}{f\left(x_{i+1}\right)-f\left(x_{i}\right)}=\frac{x-x_{i}}{x_{i+1}-x_{i}}
$$

Polynomial interpolation

As an interpolating function for n points, we choose polynomial of degree at most $n-1$

For n points
http://jsxgraph.uni-bayreuth.de/wiki/index.php/Lagrange interpolation

Polynomial interpolation

Polynomial interpolation

Polynomial interpolation

Polynomial interpolation

Through n points $\left(x_{i}, y_{i}\right)$ one can hold a single polynomial of degree at most $\mathrm{n}-1$. Different forms of notation of the polynomial

$$
\begin{aligned}
y(x) & =P_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}= \\
& =x \cdot\left(x \cdot\left(x \cdot a_{3}+a_{2}\right)+a_{1}\right)+a_{0}= \\
& =a_{3} \cdot\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot\left(x-x_{3}\right)
\end{aligned}
$$

What function will be obtained by adding 2 polynomials of degree 3 ?

Lagrange interpolation polynomial

$$
L_{n-1}(x)=\sum_{j=1}^{n} y_{j} \prod_{k=1, k \neq j}^{n} \frac{\left(x-x_{k}\right)}{\left(x_{j}-x_{k}\right)}
$$

Another form of notation

$$
\begin{aligned}
& L_{n-1}(x)=\sum_{j=1}^{n} y_{j} p_{j}(x) \\
& p_{j}(x)=\prod_{k=1, k \neq j}^{n} \frac{\left(x-x_{k}\right)}{\left(x_{j}-x_{k}\right)}
\end{aligned}
$$

Lagrange interpolation polynomial for $\mathrm{n}=4$

$$
\begin{gathered}
L_{3}(x)=\sum_{j=1}^{4} y_{j} p_{j}(x) \\
p_{1}(x)=\frac{\left(x-x_{2}\right) \cdot\left(x-x_{3}\right) \cdot\left(x-x_{4}\right)}{\left(x_{1}-x_{2}\right) \cdot\left(x_{1}-x_{3}\right) \cdot\left(x_{1}-x_{4}\right)} \\
p_{2}(x)=\frac{\left(x-x_{1}\right) \cdot\left(x-x_{3}\right) \cdot\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right) \cdot\left(x_{2}-x_{3}\right) \cdot\left(x_{2}-x_{4}\right)} \\
p_{3}(x)=\frac{\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot\left(x-x_{4}\right)}{\left(x_{3}-x_{1}\right) \cdot\left(x_{3}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right)} \\
p_{4}(x)=\frac{\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot\left(x-x_{3}\right)}{\left(x_{4}-x_{1}\right) \cdot\left(x_{4}-x_{2}\right) \cdot\left(x_{4}-x_{3}\right)}
\end{gathered}
$$

\mathbf{x}	\mathbf{y}
\mathbf{x}_{1}	y_{1}
x_{2}	y_{2}
x_{3}	y_{3}
x_{4}	y_{4}

$$
\begin{array}{|c|c|}
\hline \mathbf{x} & \mathbf{y} \\
\hline-9 & 5
\end{array} \quad \begin{gathered}
L_{3}(x)=\sum_{j=1}^{4} y_{j} p_{j}(x) \\
\hline-4 \\
\hline-2
\end{gathered} \quad \begin{aligned}
& p_{1}(x)=\frac{\square(x-(-4)) \cdot(x-(-1)) \cdot(x-7)}{(-9-(-4)) \cdot(-9-(-1)) \cdot(-9-7)} \\
& \hline-1 \\
& \hline 7
\end{aligned}
$$

x	$p 1$	$p 2$	$p 3$	$p 4$	y
-9	1	0	0	0	5
-4	0	1	0	0	2
0	$=-28 /-640$	$=-63 / 165$	$--252 /-192$	$=36 / 1408$	$-2,94$
-1	0	0	1	0	-2
7	0	0	0	1	9

Editor - CiUsers\Хомячок\Desktop\Системный анализ и моделирование\MATLAB CAnM\polypoly.m
polypoly.m \times lagrange.m $\times+$
1 - clear all
2 - clc
3 - close all
4 \% задание узлов интерполяции
$5-\quad x=\left[\begin{array}{llll}-9 & -4 & -1 & 7\end{array}\right] ;$
$6-\quad y=[52-29] ;$
7 \% задание точек, в которых требуется найти значения интерполяционного полинома
8 \%xx=linspace $(-9,7,20)$
$9-\quad x x=-9: 7$
10 \% нахождение значений интерполяционного полинома
11 - $\quad y y=$ lagrange $(x, y, x x)$;
12 \% построение графиков
13 - figure('Color','w')
14 \% вывод графика полинома
15 - $\operatorname{plot}(x x, y y, ' r ')$
16 - hold on
17 - grid on
18 \% вывод узлов интерполяции
19 - $\operatorname{plot}\left(\mathrm{x}, \mathrm{y}, \mathrm{bo}{ }^{\prime}\right)$
20 \% размещение легенды
21 - legend('\{litL_n\}(\{litx\})','nodes',-1)

Newton's method (finite difference method)

For functions $\mathrm{y}=\mathrm{f}(\mathrm{x})$, given tabularly with a constant step, the differences between the values of the function at neighboring interpolation nodes are called finite differences of the first order
$\Delta y_{i}=\Delta f(x)=f(x+h)-f(x)=y_{i+1}-y_{i}$
From finite differences of the first order, second order finite differences

$$
\Delta^{2} y_{i}=\Delta y \quad-\Delta y=f(x+2 h)-2 f(x+h)+f(x)
$$

Newton's method (finite difference method)

Finite Difference Table for $\mathrm{n}=4$

$$
\begin{array}{cccc}
\Delta^{0} y_{i} & \Delta^{1} y_{i} & \Delta^{2} y_{i} & \Delta^{3} y_{i} \\
y_{1} & y_{2}-y_{1} & \Delta^{1} y_{2}-\Delta^{1} y_{1} & \Delta^{2} y_{2}-\Delta^{2} y_{1} \\
y_{2} & y_{3}-y_{2} & \Delta^{1} y_{3}-\Delta^{1} y_{2} & \\
y_{3} & y_{4}-y_{3} & & \\
y_{4} & &
\end{array}
$$

Newton's method (finite difference method)

Finite Difference Table for $\mathrm{n}=4$

x	y	Δy	$\Delta^{2} y$
150	$\Delta^{3} y$		
200	1,80		0,60
250	1,75		
300	1,60		

Fill the table

Метод Ньютона

Newton's first interpolation formula for equidistant points. It is used if you need to calculate the value of a function near a point $\boldsymbol{x}_{\boldsymbol{1}}$

$$
P_{n-1}(x)=y_{1}+\frac{\Delta^{1} y_{1}}{h}\left(x-x_{1}\right)+\frac{\Delta^{2} y_{1}}{2!h^{2}}\left(x-x_{1}\right)\left(x-x_{2}\right)+\ldots+
$$

$$
+\frac{\Delta^{n-1} y_{1}}{(n-1)!h^{n-1}}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)
$$

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$
150	1,40	0,45	-0,55	0,50
200	1,85	-0,10	-0,05	
250	1,75	-0,15		
300	1,60			

Write a formula to calculate the value of a function at the point $x=220$

Newton's first interpolation formula for equidistant points.

Метод Ньютона

Newton's second interpolation formula for equidistant points. It is used if you need to calculate the value of a function near a point \boldsymbol{x}_{n}

$$
\begin{array}{r}
P_{n-1}(x)=y_{n}+\frac{\Delta^{1} y_{n-1}}{h}\left(x-x_{n}\right)+\frac{\Delta^{2} y_{n-2}}{2!h^{2}}\left(x-x_{n}\right)\left(x-x_{n-1}\right)+\ldots+ \\
+\frac{\Delta^{n-1} y_{1}}{(n-1)!h^{n-1}}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \ldots\left(x-x_{2}\right)
\end{array}
$$

| 4 | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \mathbf{x} | \mathbf{y} | $\Delta \mathrm{y}$ | $\Delta^{2} \mathrm{y}$ | $\Delta^{3} \mathrm{y}$ |
| 2 | 150 | 1,40 | 0,45 | $-0,55$ | 0,50 |
| 3 | 200 | 1,85 | $-0,10$ | $-0,05$ | |
| 4 | 250 | 1,75 | $-0,15$ | | |
| 5 | 300 | 1,60 | | | |

Newton's second interpolation formula for equidistant points.

Newton's method

An example of the need to use the first or second Newton formula

X	y	$\Delta^{1} \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$	$\Delta^{4} \mathrm{y}$
1.415	0.88855	0.001048	$-1 \mathrm{E}-05$	$2 \mathrm{E}-06$	$-4 \mathrm{E}-06$
1.420	0.8896	0.001038	$-8 \mathrm{E}-06$	$-2 \mathrm{E}-06$	$3 \mathrm{E}-06$
1.425	0.89064	0.001030	$-1 \mathrm{E}-05$	$1 \mathrm{E}-06$	$-1 \mathrm{E}-06$
1.430	0.89167	0.001020	$-9 \mathrm{E}-06$	$1.11 \mathrm{E}-16$	$-3.3 \mathrm{E}-16$
1.435	0.89269	0.001011	$-9 \mathrm{E}-06$	$-2.2 \mathrm{E}-16$	$4.44 \mathrm{E}-16$
1.440	0.8937	0.001002	$-9 \mathrm{E}-06$	$2.22 \mathrm{E}-16$	$1 \mathrm{E}-06$
1.445	0.8947	0.000993	$-9 \mathrm{E}-06$	$1 \mathrm{E}-06$	$-3 \mathrm{E}-06$
1.450	0.89569	0.000984	$-8 \mathrm{E}-06$	$-2 \mathrm{E}-06$	
1.455	0.89668	0.000976	$-1 \mathrm{E}-05$		
1.460	0.89765	0.000966			
1.465	0.89862				

Newton's method

Newton's formula for randomly located points $P_{n-1}(x)=y\left(x_{1}\right)+(x-$ $\left.x_{1}\right) \cdot\left[x_{1}, x_{2}\right]+\left(x-x_{1}\right)\left(x-x_{2}\right) \cdot\left[x_{1}, x_{2}, x_{3}\right]+\ldots$

$$
+\left(x-x_{1}\right)\left(x-x_{2}\right) \cdot \ldots \cdot\left(x-x_{n-1}\right) \cdot\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

$\left[x_{1}, x_{2}\right],\left[x_{1}, x_{2}, x_{3}\right], \ldots,\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ separated differences
$\left[x_{i}, x_{i+1}\right]=\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}} \quad$ separated 1st order differences
$\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{\left[x_{i+1}, x_{i+2}\right]-\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}$ separated 2st order differences
$\left[x_{i}, x_{i+1}, \ldots, x_{k+i}\right]=\frac{\left[x_{i+1}, x_{i+2}, \ldots, x_{k+i}\right]-\left[x_{i}, \ldots, x_{k+i-1}\right]}{x_{k+i}-x_{i}}$

Polynomial interpolation problems

$\mathrm{n}=6$ The interpolating function does not accurately approximate the original one. What happens if you increase the number of interpolation nodes?

Polynomial interpolation problems

Possible behavior of the interpolation function with an increase in the number of interpolation nodes $\mathrm{n}=10$

Polynomial interpolation problems

For some functions, for example $y(x)=\frac{1}{1+25 x^{2}}$, observed a phenomenon called the Runge phenomenon, when with an increase in the number of nodes, the error tends to infinity. Moreover, even for a relatively small number of nodes, the error turns out to be unacceptably large

Spline interpolation

A spline is a function that, together with several derivatives, is continuous on the entire segment, and on each partial segment given by some algebraic polynomial is

$$
P(x)=\left\{\begin{array}{cl}
P_{1}(x), & x_{1} \leq x<x_{2} \\
P_{2}(x), & x_{2} \leq x<x_{3} \\
\cdots & \\
P_{n-1}(x), & x_{n-1} \leq x \leq x_{n}
\end{array}\right.
$$

$$
x_{i+1}-x_{i}=h=\mathrm{const}, \quad i=\overline{1, n-1} .
$$

Spline interpolation

The degree of a spline is the maximum degree of polynomials over all partial segments, and the defect of a spline is the difference between the degree of the spline and the order of the highest continuity on the segment $\left[\mathrm{x}_{1}, \mathrm{x}_{\mathrm{n}}\right]$ of the derivative.

In practice, cubic splines are most often used - splines of the third degree with continuous first and second derivatives.

Quadratic splines.
Derivation of formulas.

On every segment
we define a polynomial of degree 2 in the form

\mathbf{x}	\mathbf{y}
x_{1}	y_{1}
x_{2}	y_{2}
x_{3}	y_{3}
\ldots	\ldots
x_{i}	y_{i}
$\mathrm{x}_{\mathrm{i}+1}$	$\mathrm{y}_{\mathrm{i}+1}$
$\mathrm{x}_{\mathrm{i}+2}$	$\mathrm{y}_{\mathrm{i}+2}$
\ldots	\ldots
x_{n}	y_{n}

$$
\begin{aligned}
P_{i}(x) & =a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)\left(x-x_{i+1}\right) \\
i & =1, \ldots, n-1
\end{aligned}
$$

What conditions should the interpolation function satisfy?
At the nodes, the values of the polynomial must coincide with the values of the function

$$
\begin{aligned}
& P_{i}\left(x_{i}\right)=a_{i}=y_{i} \\
& P_{i}\left(x_{i+1}\right)=a_{i}+b_{i}\left(x_{i+1}-x_{i}\right)=y_{i+1}, \quad 1 \leq i \leq n-1
\end{aligned}
$$

$$
b_{i}=\left(y_{i+1}-y_{i}\right) /\left(x_{i+1}-x_{i}\right)
$$

At the nodes, the values of the first derivatives of neighboring polynomials must coincide

$$
\begin{aligned}
& \quad P_{i}^{\prime}\left(x_{i+1}\right)=P_{i+1}^{\prime}\left(x_{i+1}\right) \\
& P_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x^{2}-x_{i} x-x_{i+1} x+x_{i} x_{i+1}\right) \\
& \quad i=1, \ldots, n-1 \\
& P_{i}^{\prime}(x)=b_{i}+c_{i}\left(2 x-x_{i}-x_{i+1}\right) \\
& P_{i+1}^{\prime}(x)=b_{i+1}+c_{i+1}\left(2 x-x_{i+1}-x_{i+2}\right)
\end{aligned}
$$

At the nodes, the values of the first derivatives of neighboring polynomials must coincide

$$
P_{i}^{\prime}\left(x_{i+1}\right)=P_{i+1}^{\prime}\left(x_{i+1}\right)
$$

$$
b_{i+1}+c_{i+1}\left(x_{i+1}-x_{i+2}\right)
$$

$$
b_{i}+c_{i}\left(2 x_{i+1}-x_{i}-x_{i+1}\right)
$$

$$
b_{i}+c_{i}\left(x_{i+1}-x_{i}\right)
$$

$$
b_{i+1}+c_{i+1}\left(2 x_{i+1}-x_{i+1}-x_{i+2}\right)
$$

At the nodes, the values of the first derivatives of neighboring polynomials must coincide

$$
\begin{gathered}
P_{i}^{\prime}\left(x_{i+1}\right)=P_{i+1}^{\prime}\left(x_{i+1}\right) \\
b_{i}+c_{i}\left(x_{i+1}-x_{i}\right)=b_{i+1}+c_{i+1}\left(x_{i+1}-x_{i+2}\right) \\
c_{i+1}\left(x_{i+2}-x_{i+1}\right)=\left(b_{i+1}-b_{i}\right)-c_{i}\left(x_{i+1}-x_{i}\right) \\
c_{i+1}=\frac{\left(b_{i+1}-b_{i}\right)-c_{i}\left(x_{i+1}-x_{i}\right)}{\left(x_{i+2}-x_{i+1}\right)} \\
\text { recurrent formula }
\end{gathered}
$$

$$
i=2,3, \ldots, n-2
$$

To calculate c 1 , an additional condition is needed

- natural spline
or

$$
\begin{aligned}
& P_{1}^{\prime \prime}(x)=0 \\
& C_{1}=0
\end{aligned}
$$

2 nd order smoothness condition at 2 node

$$
\begin{aligned}
& P "_{1}\left(x_{2}\right)=P "_{2}\left(x_{2}\right) \\
& C_{1}=C_{2}
\end{aligned}
$$

$$
c_{1}=c_{2}=\frac{\left(\underline{b}-b_{1}\right)}{\left(x_{3}-x_{1}\right)}
$$

Formulas for the coefficients of all polynomials for the natural spline condition

$$
\begin{aligned}
& a_{i}=y_{i} \\
& b_{i}=\left(y_{i+1}-y_{i}\right) /\left(x_{i+1}-x_{i}\right) \\
& 1 \leq i \leq n-1 \\
& c_{1}=0 \\
& c_{i+1}=\frac{\left(b_{i+1}-b_{i}\right)-c_{i}\left(x_{i+1}-x_{i}\right)}{\left(x_{i+2}-x_{i+1}\right)} \\
& 1 \leq i \leq n-2
\end{aligned}
$$

Formulas for the coefficients of all polynomials for the second order smoothness condition at the node x_{2}

$$
\begin{aligned}
& a_{i}=y_{i} \\
& b_{i}=\left(y_{i+1}-y_{i}\right) /\left(x_{i+1}-x_{i}\right) \\
& 2 \leq i \leq n-1 \\
& c_{2}=\frac{\left(b_{2}-b_{1}\right)}{\left(x_{3}-x_{1}\right)} \\
& c_{i+1}=\frac{\left(b_{i+1}-b_{i}\right)-c_{i}\left(x_{i+1}-x_{i}\right)}{\left(x_{i+2}-x_{i+1}\right)} \\
& 2 \leq i \leq n-2
\end{aligned}
$$

Quadratic Spline Interpolation Example

Quadratic spline coefficients for each

 interpolation segment

Spline function plots

for different calculation conditions c_{1}

Cubic splines

On each segment, a polynomial of degree 3 is given in the form

$$
\begin{aligned}
& p i(x)=a i+b i(x-x i)+c i(x-x i)^{2}+d i(x-x i)^{3} \\
& a_{i}=y_{i} \\
& \left\{c_{1}=0\right. \\
& \left\{\begin{array}{l}
c_{1}=0 \\
h_{i-1} c_{i-1}+2\left(h_{i-1}+h_{i}\right) c_{i}+h_{i} c_{i+1}=3\left[\frac{y_{i+1}-y_{i}}{h_{i}}-\frac{y_{i}-y_{i-1}}{h_{i-1}}\right]
\end{array}\right] \quad 2 \leq i \leq n-2 \\
& \mid c_{n-1}=0 \\
& b_{i}=\frac{y_{i+1}-y_{i}}{h_{i}}-\frac{1}{3} h_{i}\left(c_{i+1}+2 c_{i}\right), \quad 1 \leq i \leq n-2 \\
& d_{i}=\frac{c_{i+1}-c_{i}}{3 h_{i}}, \quad i=1, n-2 \\
& b_{n-1}=\frac{y_{n}-y_{n-1}}{h_{n-1}}-\frac{2}{3} h_{n-1} c_{n-1} \\
& d_{n-1}=-\frac{c_{n-1}}{3 h_{n-1}}
\end{aligned}
$$

Conditions for the derivation of formulas for the coefficient of splines

1. At the nodes, the values of the polynomial must coincide with the values of the function
2. At the nodes, the 1st derivatives of neighboring polynomials must coincide
3. At the nodes, the 2 nd derivatives of the neighboring polynomials must coincide.
4. Additional conditions for extreme polynomials: Equality of

1,2 and 3 derivatives for extreme polynomials means that these polynomials are identical.

Cubic Spline Interpolation Example

Cubic Spline Interpolation Example

An example of one-dimensional spline interpolation in a package MATLAB
To solve the problem, the interp1 () function is used, which has the following syntax: $\mathbf{y i}=\operatorname{interp} 1(\mathbf{x}, \mathbf{y}, \mathbf{x i})$
linear interpolation of table values x , y at points whose abscissas are in vector xi
yi = interp1($\mathbf{x}, \mathbf{y}, \mathbf{x i}, m e t h o d)$
interpolate linear values using the selected interpolation method Possible variable values method:
'nearest' interpolation using nearest nodes
'linear' linear interpolation (default)
'spline' cubic spline interpolation
'pchip' interpolation by Hermite polynomials of the third degree 'cubic' similarly pchip

In addition, there are standard functions spline()

In addition, there are standard functions
The function $p=\operatorname{polyfit}(x, y, n)$ finds the coefficients of the polynomial $p(x)$ of degree n, which approximates the function $y(x)$ in the sense of the least squares method. The output is a string p of length $n+1$, containing the coefficients of the approximating polynomial.

The function $y=$ polyval (p, s), where $\mathrm{p}=[\mathrm{p} 1 \mathrm{p} 2 \ldots \mathrm{pn} \mathrm{pn}+1]$ is the vector of coefficients of the polynomial $p(x)$, calculates the value of this polynomial at the point $\mathrm{X}=\mathrm{s}$.
Function $Y=$ polyval (p, S), where S is a one-dimensional or two-dimensional array, calculates the value of this polynomial for each element in the array.

The function $\mathrm{yi}=$ spline $(\mathrm{x}, \mathrm{y}, \mathrm{xi})$ interpolates the values of the function y at the points xi within the domain of the function using cubic splines.

The function $v=\mathbf{p p v a l}(p p, x x)$ evaluates the value of the piecewise smooth polynomial pp for the values of the argument xx .

The $\mathrm{pp}=\mathbf{m k p p}$ (breaks, coefs) function forms a piecewise smooth pp polynomial by its characteristics:
breaks - vector of argument splitting; coefs - Coefficients of cubic splines.
clear all
clc
close all
\% Задание табличных значений интерполируемой функции
$\mathrm{x}=\left[\begin{array}{llll}-9 & -4 & -1 & 7\end{array}\right]$;
$y=\left[\begin{array}{llll}5 & 2 & -2 & 9\end{array}\right] ;$
plot(x,y,'bo')
hold on
grid on
\%Задание значения абсцисс точек, в которых вычисляется значение интерполяя $x x=-9: 7$
\%Вычисление интерполируемых значений функции в узлах координатной сетки yi=interp1 $(x, y, x x)$;
plot(xx,yi, 'r')
hold on
$y \mathrm{y}=$ interp1($\mathrm{x}, \mathrm{y}, \mathrm{xx}$, 'spline');
plot(xx,yy, 'k')
hold on

An example of using spline interpolation to construct a horizontal well profile

Interpolation of a function of 2 variables

An example of plotting an interpolation function of two variables in Matlab

Средняя пористость нефтеносного пласта

THANK YOU FOR ATTENTION

