Altai State University

Discipline "Numerical Methods in Physics"

Lecture 4. Spline interpolation

Shevchuk Evgeniya Petrovna, Senior Lecturer, Department of General and Experimental Physics, Institute of Digital Technologies, Electronics and Physics Methods for setting functions

- 1. Analytical
- 2. Tabular
- 3. Graphic

Buckley-Leverett function (fraction of water in the stream)

S - water saturation

 η - the ratio of the viscosities of water and oil

$$F(S) = \frac{S^2}{S^2 + \eta(1 - S)^2}$$

Interpolation problem

Interpolation, interpolation is a method of finding intermediate values of a quantity from an available set of known values. The values of the function y = f(x) are known only at these points $y_i = f(x_i), i=1,...N$

The interpolation problem is to find such a function F from a given class of functions that $F(x_i)=y_i$, i=1,...N

Points x_i are called interpolation nodes,

and their totality - by an interpolation grid.

Pairs x_i , y_i called data points or base points.

Difference between "adjacent" values $\Delta_i = x_i - x_{i-1}$ — step of the interpolation grid. The step can be both variable and constant. Function F(x) called interpolation function or interpolant.

Interpolation function

Interpolation example

Piecewise linear interpolation

Equation of a straight line passing through $(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))$

$$\frac{y - f(x_i)}{f(x_{i+1}) - f(x_i)} = \frac{x - x_i}{x_{i+1} - x_i}$$

As an interpolating function for n points, we choose polynomial of degree at most n-1

For n points

http://jsxgraph.uni-bayreuth.de/wiki/index.php/Lagrange_interpolation

Through n points (x_i, y_i) one can hold a single polynomial of degree at most n-1. Different forms of notation of the polynomial

$$y(x) = P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 =$$

= $x \cdot (x \cdot (x \cdot a_3 + a_2) + a_1) + a_0 =$
= $a_3 \cdot (x - x_1) \cdot (x - x_2) \cdot (x - x_3)$

What function will be obtained by adding 2 polynomials of degree 3?

Lagrange interpolation polynomial

$$L_{n-1}(x) = \sum_{j=1}^{n} y_j \prod_{k=1, k \neq j}^{n} \frac{(x - x_k)}{(x_j - x_k)}$$

Another form of notation

$$L_{n-1}(x) = \sum_{j=1}^{n} y_j p_j(x)$$
$$p_j(x) = \prod_{k=1, k \neq j}^{n} \frac{(x - x_k)}{(x_j - x_k)}$$

Lagrange interpolation polynomial for n = 4

$$L_{3}(x) = \sum_{j=1}^{4} y_{j} p_{j}(x)$$

$$p_1(x) = \frac{(x - x_2) \cdot (x - x_3) \cdot (x - x_4)}{(x_1 - x_2) \cdot (x_1 - x_3) \cdot (x_1 - x_4)}$$

X

 \mathbf{X}_1

X₂

X3

 X_4

У

y₁

y₂

y₃

y₄

$$p_{2}(x) = \frac{(x - x_{1}) \cdot (x - x_{3}) \cdot (x - x_{4})}{(x_{2} - x_{1}) \cdot (x_{2} - x_{3}) \cdot (x_{2} - x_{4})}$$

$$p_3(x) = \frac{(x - x_1) \cdot (x - x_2) \cdot (x - x_4)}{(x_3 - x_1) \cdot (x_3 - x_2) \cdot (x_3 - x_4)}$$

$$p_4(x) = \frac{(x - x_1) \cdot (x - x_2) \cdot (x - x_3)}{(x_4 - x_1) \cdot (x_4 - x_2) \cdot (x_4 - x_3)}$$

X	У
-9	5
-4	2
-1	-2
7	9

$$L_{3}(x) = \sum_{j=1}^{4} y_{j} p_{j}(x)$$

$$p_{1}(x) = \frac{\Box(x - (-4)) \cdot (x - (-1)) \cdot (x - 7)}{(-9 - (-4)) \cdot (-9 - (-1)) \cdot (-9 - 7)}$$

$$p_{2}(x) = \frac{\Box(x - (-9)) \cdot (x - (-1)) \cdot (x - 7)}{(-4 - (-9)) \cdot (-4 - (-1)) \cdot (-4 - 7)}$$

$$p_3(x) = \frac{(x - \dots)(\dots)}{(\dots - \dots)(\dots)}$$

$$p_4(x) = \frac{(x - \dots)(\dots)}{(\dots - \dots)(\dots)}$$

	А	В	С	D	E	F	G	Н	I	J	
1	x	у					10				
2	-9	5					8				
3	-4	2					6				
4	-1	-2		•			4				
5	7	9					2				
6							0				
7			-10) -8	-6	-4	-2	þ	2		5 8
8							-2				
9							-4				
10							-6				
11											
12	x	p1	p2	р3	p4	Y Lagrange					
13	-9	1	0	0	0	5,00					
14	-8	0,65625	0,636364	-0,3125	0,019886	5,36					
15	-7	0,39375	1,018182	-0,4375	0,025568	5,11					
16	-6	0,203125	1,181818	-0,40625	0,021307	4,38					
17	-5	0,075	1,163636	-0,25	0,011364	3,30					
18	-4	0	1	0	0	2,00					
19	-3	-0,03125	0,727273	0,3125	-0,00852	0,60					
20	-2	-0,028125	0,381818	0,65625	-0,00994	-0,78					
21	-1	0	0	1	0	-2,00					
22	0	0,04375	-0,38182	1,3125	0,025568	-2,94					
23	1	0,09375	-0,72727	1,5625	0,071023	-3,47					
24	2	0,140625	-1	1,71875	0,140625	-3,47					
25	3	0,175	-1,16364	1,75	0,238636	-2,80					
26	4	0,1875	-1,18182	1,625	0,369318	-1,35					
27	5	0,16875	-1,01818	1,3125	0,536932	1,01			1		
28	6	0,109375	-0,63636	0,78125	0,745739	4,42					
29	7	0	0	0	1	9,00					

📝 E	dito	r - C:\Users\Хомячок\Desktop\Системный аналі	из и моделирование\М/	ATLAB САиM\lagrange.m*							
	poly	/poly.m × lagrange.m* × +									
1		function yy=lagrange(x,y,xx)									
2											
3	% х - массив координат узлов										
4		% у - массив значений инт	ерполируемой	функции							
5		% хх - массив значений ар	гумента, для ко	оторых надо вычислить значения полинома							
6		- % уу - массив значений по	пинома в точка	x xx							
7											
8		% узнаем число узлов инте	ерполяции (N=r	1+1)							
9	—	N=length(x);									
10		% создаем нулевой масси	в значений инт	ерполяционного полинома							
11	—	yy=zeros(size(xx));									
12		% в цикле считаем сумму	по узлам								
13	-	📄 for k=1:N									
14		% вычисляем произведе	ения								
15	-	t=ones(size(xx));									
16	-	<pre>for j=[1:k-1, k+1:N]</pre>	🗢 🔿 🛅 💹 📙 F C: F	Users → Хомячок → Desktop → Системный анализ и моделирование → MATLAB CAMM							
17	—	t=t.*(xx-x(j))/(x(k)-x(j));	Current Folder								
18	—	- end	🗋 Name 🔺	polypoly.m × lagrange.m* × Untitled3* × +							
19		% накапливаем сумму	lagrange.m*	1 [function [output_args] = Untitled3(input_args)							
20	—	$yy = yy + y(k)^{*}t;$	🖆 polypoly.m	2 %UNTITLED3 Summary of this function goes here							
21	—	end		3 -% Detailed explanation goes here							
22				4							
				6 end							
				7							
				8							

J	poly.m 🛛 lagrange.m 🗶 🕂	
1 -	clear all	
2 -	clc	
3 -	close all	
4	% задание узлов интерполяции	
5 -	x=[-9 -4 -1 7];	
6 -	y=[5 2 -2 9];	
7	% задание точек, в которых треб	буется найти значения интерполяционного полинома
8	%xx=linspace(-9,7,20)	
9 -	xx <mark>=</mark> -9:7	
10	% нахождение значений интерпо	оляционного полинома
11 -	yy=lagrange(x,y,xx);	
	<i>y</i> ingrange(<i>x</i> , <i>y</i> , <i>x</i> , <i>y</i> ,	
	% построение графиков	
12		
12 13 -	% построение графиков	
12 13 - 14	% построение графиков figure('Color','w')	
12 13 - 14 15 - 16 -	% построение графиков figure('Color','w') % вывод графика полинома	Figure 1
12 13 - 14 15 - 16 -	% построение графиков figure('Color','w') % вывод графика полинома plot(xx,yy,'r')	Figure 1 File Edit View Insert Tools Desktop Window Help ℃ ⓒ @ @
12 13 - 14 15 -	% построение графиков figure('Color','w') % вывод графика полинома plot(xx,yy,'r') hold on	File Edit View Insert Tools Desktop Window Help
12 13 - 14 15 - 16 - 17 -	% построение графиков figure('Color','w') % вывод графика полинома plot(xx,yy,'r') hold on grid on	File Edit View Insert Tools Desktop Window Help
12 13 - 15 - 16 - 17 - 18 19 -	% построение графиков figure('Color','w') % вывод графика полинома plot(xx,yy,'r') hold on grid on % вывод узлов интерполяции	File Edit View Insert Tools Desktop Window Help
12 13 - 15 - 16 - 17 - 18 19 - 20	% построение графиков figure('Color','w') % вывод графика полинома plot(xx,yy,'r') hold on grid on % вывод узлов интерполяции plot(x,y,'bo') % размещение легенды	File Edit View Insert Tools Desktop Window Help
L2 L3 - L5 - L6 - L7 - L8 L9 - 20 21 -	% построение графиков figure('Color','w') % вывод графика полинома plot(xx,yy,'r') hold on grid on % вывод узлов интерполяции plot(x,y,'bo')	File Edit View Insert Tools Desktop Window Help
12 13 - 14 15 - 16 - 17 - 18	% построение графиков figure('Color','w') % вывод графика полинома plot(xx,yy,'r') hold on grid on % вывод узлов интерполяции plot(x,y,'bo') % размещение легенды	File Edit View Insert Tools Desktop Window Help

Newton's method (finite difference method)

For functions y = f(x), given tabularly with a constant step, the differences between the values of the function at neighboring interpolation nodes are called finite differences of the first order

$$\Delta y_i = \Delta f(x) = f(x+h) - f(x) = y_{i+1} - y_i$$

From finite differences of the first order, second order finite differences

$$\Delta^2 y_i = \Delta y_i - \Delta y_i = f(x+2h) - 2f(x+h) + f(x)$$

Newton's method (finite difference method)

 $\Delta^2 y_2 - \Delta^2$

Finite Difference Table for n = 4

$$\Delta^{0} y_{i} \quad \Delta^{1} y_{i} \qquad \Delta^{2} y_{i}$$

$$y_{1} \quad y_{2} - y_{1} \quad \Delta^{1} y_{2} - \Delta^{1} y_{1}$$

$$y_{2} \quad y_{3} - y_{2} \quad \Delta^{1} y_{3} - \Delta^{1} y_{2}$$

$$y_{3} \quad y_{4} - y_{3}$$

$$y_{4}$$

Newton's method (finite difference method)

Finite Difference Table for n = 4

X	У	Δy	Δ ² y	Δ ³ y
150	1,40			0,60
200	1,85			
250	1,75			
300	1,60			

Fill the table

Метод Ньютона

Newton's first interpolation formula for equidistant points. It is used if you need to calculate the value of a function near a point x_1

$$P_{n-1}(x) = y_1 + \frac{\Delta^1 y_1}{h} (x - x_1) + \frac{\Delta^2 y_1}{2!h^2} (x - x_1)(x - x_2) + \dots + \frac{\Delta^{n-1} y_1}{(n-1)!h^{n-1}} (x - x_1)(x - x_2) \dots (x - x_{n-1})$$

$$\frac{\mathbf{x} \quad \mathbf{y} \quad \Delta \mathbf{y} \quad \Delta^2 \mathbf{y} \quad \Delta^3 \mathbf{y}}{\frac{150 \quad 1.40 \quad 0.45 \quad -0.55 \quad 0.50}{250 \quad 1.75 \quad -0.15 \quad \dots}}$$

Write a formula to calculate the value of a function at the point x=220

Newton's first interpolation formula for equidistant points.

	Α	В	С	D	E	F	G	Н	1	J	К	
1	x	у	∆у	Δ²y	Δ ³ y							
2	150	1,40	0,45	-0,55	0,50							
3	200	1,85	-0,10	-0,05								
4	250	1,75	-0,15									
5	300	1,60										
6												
7												
8	x	Y1H										
9	150	1,40						10.0	dauan	MI DOM		
10	160	=\$B\$2 <mark>+\$</mark> C\$	\$ <mark>2/50*(</mark> A10	-\$A\$2)+\$D	\$2/(2*50^2)*(A10-\$A\$	2)*(A10-\$A	(\$3)+: <i>110</i>	осказі	ки зак	ончил	ись,
11	170	1,68						-bc	рмуле	а - неп	n	
12	180	1,76	2,00					T	IJ			
13	190	1,82	1,80					-				
14	200	1,85	1,60					× *				
15	210						/					
16	220	1,85	1,40				•					
17	230											
18	240		1,00									
19	250		0,80									
20	260											
21	270		0,60									
22	280		0,40									
23	290		0,20									
24	300	1,60	0,00									
25			0	50)	100	150	20	00	250		
								/				

Метод Ньютона

Newton's second interpolation formula for equidistant points. It is used if you need to calculate the value of a function near a point x_n

$$P_{n-1}(x) = y_n + \frac{\Delta^1 y_{n-1}}{h} (x - x_n) + \frac{\Delta^2 y_{n-2}}{2!h^2} (x - x_n) (x - x_{n-1}) + \dots + \frac{\Delta^{n-1} y_1}{(n-1)!h^{n-1}} (x - x_n) (x - x_{n-1}) \dots (x - x_2)$$

	А	В	С	D	E
1	x	у	∆у	Δ²γ	Δ ³ y
2	150	1,40	0,45	-0,55	0,50
3	200	1,85	-0,10	-0,05	
4	250	1,75	-0,15		
5	300	1,60			

Newton's second interpolation formula for equidistant points.

21	A	В	С	D	E	F	G	н	1	J	K	4	M
1	x	У	Δу	$\Delta^2 y$	Δ ³ y								
2	150	1,40	0,45	-0,55	0,50								
3	200	1,85	-0,10	-0,05									
4	250	1,75	-0,15										
5	300	1,60	1										
6				2.00									
7				2,00									
8	x	Y1H	Y2H	1,80					~		a a a		
9	150	1,40	1,40	1,60					1			***	
10	160	1,56		1 10					2				
11	170	1,68											
12	180	1,76											
13	190	1,82	1,82	2,00									
14	200	1,85	1,85	0,80									
15	210	1,86		0,60				0	бласть пос	TROBUNG			
16	220	1,85	1,85	0,40				10	onacia not	просния			
17	230	1,82	1,82	0,20									
18	240	1,79	1,79										
19	250	1,75	1,75	0,00)	50	100	150		200	250	300	
20	260	1,71	1,71										
21	270	1,67	1,67										
22	280	1,63	1.63										
23	290	1,61	=\$8\$5+\$C	\$4/50*(A23	3-\$A\$5)+\$D\$	3/(2*50^2	2)*(A23-\$A\$	5)*(A23-\$A\$	4)+ n	podon	жите	cam	
	300	1,60	1,60		1	and the second se	1		14	00001	on on one	Castin	

Newton's method

An example of the need to use the first or second Newton formula

x		У	$\Delta^1 y$	$\Delta^2 y$	Δ^3 y	Δ^4 y
	1.415	0.88855	0.001048	-1E-05	2E-06	-4E-06
	1.420	0.8896	0.001038	-8E-06	-2E-06	3E-06
	1.425	0.89064	0.001030	-1E-05	1E-06	-1E-06
	1.430	0.89167	0.001020	-9E-06	1.11E-16	-3.3E-16
	1.435	0.89269	0.001011	-9E-06	-2.2E-16	4.44E-16
	1.440	0.8937	0.001002	-9E-06	2.22E-16	1E-06
	1.445	0.8947	0.000993	-9E-06	1E-06	-3E-06
	1.450	0.89569	0.000984	-8E-06	-2E-06	
	1.455	0.89668	0.000976	-1E-05		
	1.460	0.89765	0.000966			
	1.465	0.89862				

Newton's method

Newton's formula for randomly located points $P_{n-1}(x) = y(x_1) + (x - x_1) \cdot [x_1, x_2] + (x - x_1)(x - x_2) \cdot [x_1, x_2, x_3] + ...$

$$+(x-x_1)(x-x_2)\cdots(x-x_{n-1})\cdot[x_1,x_2,\dots,x_n]$$

 $[x_1, x_2], [x_1, x_2, x_3], ..., [x_1, x_2, ..., x_n]$ separated differences

$$[x_i, x_{i+1}] = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$
 separated 1st order differences

 $[x_{i}, x_{i+1}, x_{i+2}] = \frac{[x_{i+1}, x_{i+2}] - [x_{i}, x_{i+1}]}{x_{i+2} - x_{i}}$ separated 2st order differences

$$[x_{i}, x_{i+1}, \dots, x_{k+i}] = \frac{[x_{i+1}, x_{i+2}, \dots, x_{k+i}] - [x_{i}, \dots, x_{k+i-1}]}{x_{k+i} - x_{i}}$$

separated kth order differences

Polynomial interpolation problems

n=6 The interpolating function does not accurately approximate the original one. What happens if you increase the number of interpolation nodes?

Polynomial interpolation problems

For some functions, for example $y(x) = \frac{1}{1+25x^2}$, observed a phenomenon called the Runge phenomenon, when with an increase in the number of nodes, the error tends to infinity. Moreover, even for a relatively small number of nodes, the error turns out to be unacceptably large

Spline interpolation

A spline is a function that, together with several derivatives, is continuous on the entire segment, and on each partial segment given by some algebraic polynomial is

$$P(x) = \begin{cases} P_1(x), & x_1 \le x < x_2, \\ P_2(x), & x_2 \le x < x_3, \\ \dots & \\ P_{n-1}(x), & x_{n-1} \le x \le x_n \end{cases}$$

$$x_{i+1} - x_i = h = \text{const}, \quad i = \overline{1, n-1}.$$

Spline interpolation

The degree of a spline is the maximum degree of polynomials over all partial segments, and the defect of a spline is the difference between the degree of the spline and the order of the highest continuity on the segment $[x_1, x_n]$ of the derivative.

Quadratic splines.

Derivation of formulas.

On every segment

we define a polynomial of degree 2 in the form

$$P_{i}(x) = a_{i} + b_{i}(x - x_{i}) + c_{i}(x - x_{i})(x - x_{i+1})$$

$$i = 1, \dots, n-1$$

X

 X_1

X₂

 X_3

X_i

. . .

 X_{i+1}

 X_{i+2}

. . .

X_n

У

y₁

y₂

y₃

y_i

 y_{i+1}

 y_{i+2}

. . .

y_n

. . .

How to determine the odds?

What conditions should the interpolation function satisfy?

At the nodes, the values of the polynomial must coincide with the values of the function

$$P_{i}(x_{i}) = a_{i} = y_{i}$$

$$P_{i}(x_{i+1}) = a_{i} + b_{i}(x_{i+1} - x_{i}) = y_{i+1}, \quad 1 \le i \le n-1$$

$$b_i = (y_{i+1} - y_i) / (x_{i+1} - x_i)$$

At the nodes, the values of the first derivatives of neighboring polynomials must coincide

$$P'_{i}(x_{i+1}) = P'_{i+1}(x_{i+1})$$

$$P'_{i}(x) = a_{i} + b_{i}(x - x_{i}) + c_{i}(x^{2} - x_{i}x - x_{i+1}x + x_{i}x_{i+1})$$

$$i = 1, ..., n - 1$$

$$P'_{i}(x) = b_{i} + c_{i}(2x - x_{i} - x_{i+1})$$

$$P'_{i+1}(x) = b_{i+1} + c_{i+1}(2x - x_{i+1} - x_{i+2})$$

At the nodes, the values of the first derivatives of neighboring polynomials must coincide

$$P'_{i}(x_{i+1}) = P'_{i+1}(x_{i+1})$$

$$=$$

$$=$$

$$b_{i+1} + c_{i+1}(x_{i+1} - x_{i+2})$$

$$b_{i} + c_{i}(2x_{i+1} - x_{i} - x_{i+1})$$

$$b_{i} + c_{i}(x_{i+1} - x_{i})$$

$$b_{i+1} + c_{i+1}(2x_{i+1} - x_{i+1} - x_{i+2})$$

At the nodes, the values of the first derivatives of neighboring polynomials must coincide

$$P'_{i}(x_{i+1}) = P'_{i+1}(x_{i+1})$$

$$b_{i} + c_{i}(x_{i+1} - x_{i}) = b_{i+1} + c_{i+1}(x_{i+1} - x_{i+2})$$

$$c_{i+1}(x_{i+2} - x_{i+1}) = (b_{i+1} - b_{i}) - c_{i}(x_{i+1} - x_{i})$$

$$c_{i+1} = \frac{(b_{i+1} - b_{i}) - c_{i}(x_{i+1} - x_{i})}{(x_{i+2} - x_{i+1})}$$

recurrent formula

$$i = 2, 3, ..., n-2$$

To calculate c1, an additional condition is needed

- natural spline

$$P''_{1}(x) = 0$$

 $c_{1} = 0$

or

- 2nd order smoothness condition at 2 node

$$P''_{1}(x_{2}) = P''_{2}(x_{2})$$

$$C_{1} = C_{2}$$

$$C_{1} = C_{2} = \frac{(b_{2} - b_{1})}{(x_{3} - x_{1})}$$

Formulas for the coefficients of all polynomials for the natural spline condition

$$a_{i} = y_{i}$$

$$b_{i} = (y_{i+1} - y_{i}) / (x_{i+1} - x_{i})$$

$$1 \le i \le n - 1$$

$$c_{1} = 0$$

$$c_{i+1} = \frac{(b_{i+1} - b_{i}) - c_{i}(x_{i+1} - x_{i})}{(x_{i+2} - x_{i+1})}$$

$$1 \le i \le n-2$$

Formulas for the coefficients of all polynomials for the second order smoothness condition at the node x₂

 $2 \le i \le n - 2$

Quadratic Spline Interpolation Example

0,8 1,8 2,8 3,8 4,8 5,8 6,8 0,8	Исходные данные 2,895 2,91 2,937 2,95 2,92 2,901 2,893										
1,8 2,8 3,8 4,8 5,8 6,8	2,91 2,937 2,95 2,92 2,901										
2,8 3,8 4,8 5,8 6,8	2,937 2,95 2,92 2,901										
3,8 4,8 5,8 6,8	2,95 2,92 2,901										
4,8 5,8 6,8	2,92 2,901										
5,8 6,8	2,901										
6,8											
	2,893										
0,8											
0,8											
0,8											
1,05		Исходные данные									
1,3	2,96										
1,55											
1,8	2,95				•						
2,05	2,94										
2,3				•							
	2,93										
	2,92					_					
						T					
	2,91		•								
	2,9						•				
		•						•			
		1	2	3	4	5	6	7	8	9	10
		-	~	-		-	~		-	-	20
5 55											
5,55											
	2,55 2,8 3,05 3,3 3,55 3,8 4,05 4,3 4,55 4,8 5,05 5,3 5,55	2,55 2,93 2,8 2,92 3,05 2,91 3,3 2,91 3,55 2,9 3,8 2,9 4,05 2,89 4,3 2,89 4,3 0 4,55 4,8 0 5,05 5,3	2,55 2,93 2,8 2,92 3,05 2,92 3,3 2,91 3,55 2,9 3,55 2,9 3,65 2,9 3,8 2,9 4,05 2,89 4,3 0 4,55 1 4,8 5,05 5,3 5,55 5,8 5	2,55 2,93 2,8 2,92 3,05 2,92 3,33 2,91 3,55 2,9 3,55 2,9 3,8 2,9 4,05 2,89 4,33 0 1 2 4,55 1 5,05 1 5,33 1 5,55 1 5,8 1	2,55 2,93 2,8 2,92 3,05 2,92 3,3 2,91 3,55 2,9 3,55 2,9 3,8 2,9 4,05 2,89 4,3 0 1 2 3 4,55	2,55 2,93 2,93 $$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Quadratic spline coefficients for each interpolation segment

	А	В	C D		Е	F	G	н	
1	x	у		а	b	с	N сплайна		
2	0,8	2,895		2,895	0,015	0	1		
3	1,8	2,91		2,91	0,027	0,012	2		
4	2,8	2,937		2,937	0,013	-0,026	3		
5	3,8	2,95		2,95	- <mark>0,0</mark> 3	-0,017	4		
6	4,8	2,92		2,92	-0,019	0,028	5		
7	5,8	2,901		2,901	-0,008	-0,017	6		Δ
8	6,8	2,893							
0									

Spline function plots for different calculation conditions c_1

Cubic splines

On each segment, a polynomial of degree 3 is given in the form

$$pi(x) = ai + bi(x - xi) + ci(x - xi)^2 + di(x - xi)^3$$

$$\begin{cases} c_{1} = 0 \\ h_{i-1}c_{i-1} + 2(h_{i-1} + h_{i})c_{i} + h_{i}c_{i+1} = 3\left[\frac{y_{i+1} - y_{i}}{h_{i}} - \frac{y_{i} - y_{i-1}}{h_{i-1}}\right] \\ |c_{n-1}| = 0 \end{cases}$$
 $2 \le i \le n-2$

 $d_i = \frac{c_{i+1} - c_i}{3h_i}, \quad i = 1, n - 2$

 $-\frac{c_{n-1}}{3h_{n-1}}$

 d_{n-1} .

$$b_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{1}{3} h_{i}(c_{i+1} + 2c_{i}), \quad 1 \le i \le n - 2$$

$$b_{n-1} = \frac{y_n - y_{n-1}}{h_{n-1}} - \frac{2}{3} h_{n-1} c_{n-1}$$

Conditions for the derivation of formulas for the coefficient of splines

1. At the nodes, the values of the polynomial must coincide with the values of the function

2. At the nodes, the 1st derivatives of neighboring polynomials must coincide

3. At the nodes, the 2nd derivatives of the neighboring polynomials must coincide.

4. Additional conditions for extreme polynomials: Equality of 1, 2 and 3 derivatives for extreme polynomials means that these polynomials are identical.

Cubic Spline Interpolation Example

Cubic Spline Interpolation Example

An example of one-dimensional spline interpolation in a package MATLAB

To solve the problem, the **interp1** () function is used, which has the following syntax: **yi** = **interp1**(**x**,**y**,**xi**)

linear interpolation of table values x, y at points whose abscissas are in vector xi

yi = interp1(x,y,xi,method)

interpolate linear values using the selected interpolation method Possible variable values **method**:

'nearest' interpolation using nearest nodes
'linear' linear interpolation (default)
'spline' cubic spline interpolation
'pchip' interpolation by Hermite polynomials of the third degree
'cubic' similarly pchip

In addition, there are standard functions spline()

In addition, there are standard functions

The function p = polyfit (x, y, n) finds the coefficients of the polynomial p (x) of degree n, which approximates the function y (x) in the sense of the least squares method. The output is a string p of length n + 1, containing the coefficients of the approximating polynomial.

The function y = polyval (p, s), where $p = [p1 \ p2 \dots pn \ pn + 1]$ is the vector of coefficients of the polynomial p (x), calculates the value of this polynomial at the point x = s.

Function Y = polyval (p, S), where S is a one-dimensional or two-dimensional array, calculates the value of this polynomial for each element in the array.

The function yi = spline(x, y, xi) interpolates the values of the function y at the points xi within the domain of the function using cubic splines.

The function v = ppval (pp, xx) evaluates the value of the piecewise smooth polynomial pp for the values of the argument xx.

The pp = **mkpp** (breaks, coefs) function forms a piecewise smooth pp polynomial by its characteristics: **breaks** - vector of argument splitting; **coefs** - Coefficients of cubic splines.

clear all

clc

close all

% Задание табличных значений интерполируемой функции

x=[-9 -4 -1 7];

y=[5 2 -2 9];

plot(x,y,'bo')

hold on

grid on

%Задание значения абсцисс точек, в которых вычисляется значение интерполя xx=-9:7

%Вычисление интерполируемых значений функции в узлах координатной сетки yi=interp1(x,y,xx);

plot(xx,yi, 'r') hold on

```
yy=interp1(x,y,xx, 'spline');
plot(xx,yy, 'k')
hold on
```


An example of using spline interpolation to construct a horizontal well profile

Interpolation of a function of 2 variables

An example of plotting an interpolation function of two variables in Matlab

THANK YOU FOR ATTENTION