Единый государственный экзамен по ФИЗИКЕ

Тренировочный вариант 001

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 30 заданий.

В заданиях 3–5, 9–11, 14–16 и 20 ответом является целое число или конечная десятичная дробь. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже образцу в бланк ответа № 1. Единицы измерения физических величин писать не нужно.

$$OTBET$$
: _ -2,5 M/c^2 . $3-2,5$

Ответом к заданиям 1, 2, 6–8, 12, 13, 17–19, 21, 23 является последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже образцу без пробелов, запятых и других дополнительных символов в бланк ответов \mathbb{N}_2 1.

Ответом к заданию 22 являются два числа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже образцу, не разделяя числа пробелом, в бланк ответов № 1.

КИМ Ответ:
$$(1,4 \pm 0,2)$$
 Н. $[1,40,2]$

Ответ к заданиям 24–30 включает в себя подробное описание всего хода выполнения задания. В бланке ответов № 2 укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначение	Множитель	Наимено-	Обозначение	Множитель
вание			вание		
гига	Γ	10°	санти	c	10^{-2}
мега	M	10 ⁶	милли	M	10^{-3}
кило	К	10^{3}	микро	MK	10^{-6}
гекто	Γ	10^{2}	нано	Н	10 ⁻⁹
деци	Д	10^{-1}	пико	П	10^{-12}

Константы	
число π	$\pi = 3,14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6,7 \cdot 10^{-11} \text{ H} \cdot \text{м}^2/\text{к}\Gamma^2$
универсальная газовая постоянная	R = 8,31 Дж/(моль·К)
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{ m A} = 6 \cdot 10^{23} \ m моль^{-1}$
скорость света в вакууме	$c = 3.10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2/\text{K} \pi^2$
модуль заряда электрона (элементарный электрический заряд)	$e = 1,6 \cdot 10^{-19} \text{ Кл}$
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{c}$

Соотношение между различными единицами				
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$			
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг			
1 атомная единица массы эквивалентна	931,5 МэВ			
1 электронвольт	$1 ext{ 9B} = 1,6 \cdot 10^{-19} ext{ Дж}$			
1 астрономическая единица	1 a.e. ≈ 150 000 000 км			
1 световой год	1 св. год $\approx 9,46 \cdot 10^{15}$ м			
1 парсек	1 пк ≈ 3,26 св. года			

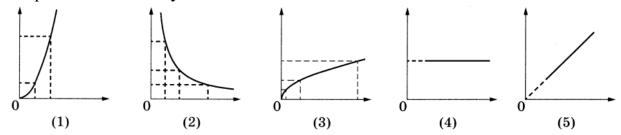
Масса частиц	
электрона	$9,1\cdot10^{-31}$ кг $\approx 5,5\cdot10^{-4}$ а.е.м.
протона	$1,673 \cdot 10^{-27} \text{ кг} \approx 1,007 \text{ a.e.м.}$
нейтрона	$1,675 \cdot 10^{-27} \text{ кг} \approx 1,008 \text{ a.e.м.}$

Плотность		подсолнечного масла	900 кг/м ³
воды	$1000 \ \text{кг/м}^3$	алюминия	2700 кг/м ³
древесины (сосна)	400 кг/м ³	железа	7800 кг/м ³
керосина	800 кг/м ³	ртути	13 600 кг/м ³

						=
Удельная теплоёмкость						
воды	$4,2\cdot10^{3}$	Дж/((кг•К)	алюминия	900	Дж/(кг·К)
льда	$2,1\cdot10^{3}$	Дж/((кг•К)	меди	380	Дж/(кг·К)
железа	460	Дж/((кг-К)	чугуна	500	Дж/(кг·К)
свинца	130	Дж/((кг-К)			•
				_		
Удельн	ая теплот	\overline{a}				
парообразования воды 2,3·10			2,3·10 ⁶	Дж/кг		
плавления свинца 2,5·10 ⁴			2,5.104	Дж/кг		
плавления льда			3,3·10 ⁵ Дж/кг			

Нормальные условия: давление -10^5 Па, температура -0 °C

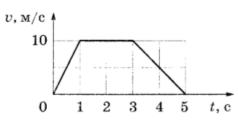
Молярная масса							
азота	$28 \cdot 10^{-3}$	кг/моль	гелия	4.10-3	кг/моль		
аргона	40.10^{-3}	кг/моль	кислорода	32.10-3	кг/моль		
водорода	2.10-3	кг/моль	лития	6.10-3	кг/моль		
воздуха	$29 \cdot 10^{-3}$	кг/моль	неона	20.10-3	кг/моль		
воды	18.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль		


Часть 1

Ответами к заданиям 1–23 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

- Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.
 - 1) Свободным падением называется движение тела под действием только силы тяжести, когда все остальные силы отсутствуют или уравновешивают друг друга.
 - 2) В процессе плавления постоянной массы вещества его внутренняя энергия уменьшается.
 - 3) Общее сопротивление системы параллельно соединённых резисторов равно сумме сопротивлений всех резисторов.
 - 4) Дисперсия света обусловлена зависимостью абсолютного показателя преломления вещества от длины световой волны.
 - 5) Массовое число ядра равно сумме масс протонов и электронов в ядре.

_		
Ответ:		
OIBCI.		

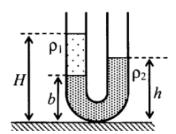

- 2 Даны следующие зависимости величин:
 - А) зависимость центростремительного ускорения точки, движущейся по окружности с радиусом R, от линейной скорости точки;
 - Б) зависимость количества теплоты, выделяющегося при кристаллизации вещества, от его массы;
 - ${\bf B}$) зависимость электроёмкости плоского конденсатора с площадью пластин S от расстояния между пластинами.

Установите соответствие между этими зависимостями и видами графиков, обозначенных цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

Ответ:

На рисунке представлен график зависимости скорости v тела от времени t. Определите среднюю скорость тела в интервале времени от 0 до 5 с после начала движения.

Ответ: _____ м/с.


4 При деформации 2 см стальная пружина имеет потенциальную энергию упругой деформации 4 Дж. Чему будет равно изменение потенциальной энергии этой пружины при уменьшении деформации на 1 см?

Ответ: _____ Дж.

5 В широкую U-образную трубку, расположенную вертикально, налиты жидкость плотностью ρ_1 и вода плотностью ρ_2 (см. рисунок).

Определите плотность жидкости ρ_1 , если на рисунке b = 5 см, h = 19 см, H = 25 см.

На наклонной плоскости находится брусок массой 2 кг, для которого составлена таблица зависимости модуля силы трения $F_{\rm rp}$ от угла плоскости к горизонту α с погрешностью, не превышающей 0,01H. Выберите все верные утверждения на основании данных, приведённых в таблице.

O.	, рад	0	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
F	' _{тр} , Н	0	1,0	2,0	3,86	3,76	3,63	3,46	3,25	3,01	2,75	2,45	2,13

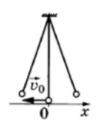
- 1) Сила трения покоя не зависит от угла α .
- 2) При уменьшении угла наклонной плоскости к горизонту модуль силы трения скольжения увеличивается.
- 3) С ростом угла наклона модуль силы трения покоя увеличивается.
- 4) Коэффициент трения скольжения меньше 0,25.
- 5) Когда угол наклона равен 0,1 рад, брусок скользит по наклонной плоскости.

Ответ: ______.

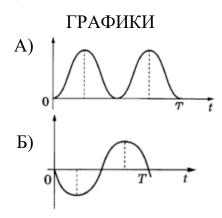
7

В результате перехода спутника Земли с одной круговой орбиты на другую его центростремительное ускорение уменьшается. Как изменяются в результате этого перехода потенциальная энергия спутника в поле силы тяжести Земли и скорость его движения по орбите?

Для каждой величины определите соответствующий характер изменения:


- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Потенциальная энергия спутника в поле силы тяжести Земли	Скорость движения спутника по орбите
	•

8

Груз, привязанный к нити, в момент времени t=0 толкнули с начальной скоростью υ_0 из состояния равновесия (см. рисунок). На графиках A и Б показано изменение физических величин, характеризующих движение груза после этого. Установите соответствие между графиками и физическими величинами, зависимости которых эти графики могут представлять.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

9

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) координата груза x
- 2) проекция скорости v_x
- (3) кинетическая энергия груза $E_{\rm k}$
- 4) потенциальная энергия груза $E_{\rm p}$

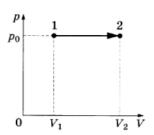
В сосуде содержится некоторое количество неона. В состоянии 1 его объём равен $V_1 = 3$ л. Определите объем газа V_2 в состоянии 2 (см. рисунок).

T^4				
			1	
	2,			
^	<u> </u>			↳
0				р

Ответ: ____ л.

В процессе эксперимента газ совершил работу 12 кДж, отдав при этом в окружающую среду 8 кДж. Определите изменение внутренней энергии газа в этом процессе.

Ответ: _____ кДж.


В сосуде, объём которого можно изменять при помощи поршня, находится воздух с относительной влажностью 25 %. Во сколько раз при неизменной температуре необходимо уменьшить объём сосуда, чтобы водяной пар стал насыщенным?

Ответ: ______ раз(-а).

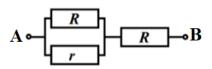
- 12 Объём сосуда, содержащего 1 моль аргона, уменьшили вдвое и добавили в сосуд 1 моль гелия. Температура в сосуде поддерживается постоянной. Выберите все верные утверждения, описывающие состояние газов после установления равновесия в системе. Запишите цифры, под которыми они указаны.
 - 1) Концентрация аргона и гелия в сосуде одинаковы.
 - 2) Парциальное давление аргона не изменилось.
 - 3) Внутренняя энергия аргона не изменилась.
 - 4) Плотность газа в сосуде не изменилась.
 - 5) Давление в сосуде увеличилось в 4 раза.

Ответ: ______.

Идеальный одноатомный газ переходит из состояния 1 в состояние 2. Чему равны изменение его внутренней энергии и полученное газом количество теплоты в этом процессе? Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

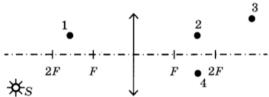

- А) изменение внутренней энергии при переходе из состояния 1 в состояние 2
- Б) количество теплоты, полученное при переходе из состояния 1 в состояние 2

	A	Б
Ответ:		

ФОРМУЛЫ

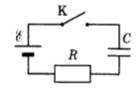
- 1) $p_0(V_2-V_1)$
- 2) $\frac{1}{2}p_0(V_2-V_1)$
- 3) $\frac{3}{2}p_0(V_2-V_1)$
- 4) $\frac{5}{2}p_0(V_2-V_1)$

Сопротивление участка цепи AB равно 64 Ом, сопротивление резистора r = 60 Ом. Определите сопротивление каждого из резисторов R.



Ответ: на_____ Ом.

В опыте по наблюдению электромагнитной индукции квадратная рамка из одного витка тонкого провода находится в однородном магнитном поле, перпендикулярном плоскости рамки. Индукция магнитного поля равномерно возрастает от 0 до максимального значения B_{max} за время T. При этом возбуждается ЭДС индукции равная 8 мВ. Определите ЭДС индукции, возникающую в рамке, если промежуток времени T увеличить в 2 раза, а B_{max} в 2 раза уменьшить.


Ответ: _____ мВ.

16 Какая из точек 1—4 является изображением точки S (см. рисунок), создаваемым тонкой собирающей линзой с фокусным расстоянием F?

Ответ:

17 Конденсатор подключён к источнику тока последовательно с резистором сопротивлением R=20 кОм. В момент времени t=0 ключ K замыкают. В этот момент конденсатор полностью разряжен. Результаты измерения силы тока в цепи, выполненных с погрешностью ± 1 мкА, представлены в таблице.

<i>t</i> , c	0	1	2	3	4	5	6
<i>I</i> , мкА	300	110	40	15	5	2	1

Выберите все утверждения, соответствующие результатам этого опыта. Внутренним сопротивлением источника тока и сопротивлением проводов пренебречь.

- 1) Напряжение на резисторе возрастает.
- 2) ЭДС источника тока равна 12 В.
- 3) В момент времени t = 2 с напряжение на резисторе равно 5,2 В.
- 4) В момент времени t = 4 с напряжение на конденсаторе равно 5,9 В.
- 5) В течении всего времени наблюдения конденсатор заряжается.

Ответ: _____

18

Лазерный луч красного цвета падает перпендикулярно на дифракционную решётку со 100 штрихами на 1 мм. На экране, установленном за решёткой параллельно ей, возникает дифракционная картина, состоящая из темных и красных полос. Как изменится расстояние между красными полосами и их количество на экране при замене этой решётки на решётку с 50 штрихами на 1 мм?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Расстояние между красными	Количество красных полос
полосами	на экране

19

Электрон массой m и зарядом e, движется перпендикулярно линиям индукции однородного магнитного поля \vec{B} по окружности радиусом R. Действием силы тяжести пренебречь.

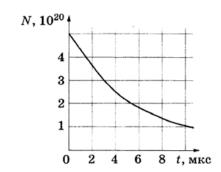
Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите <u>в таблицу</u> выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- А) импульс электрона
- Б) частота обращения частицы по окружности

Ответ:

A	Б

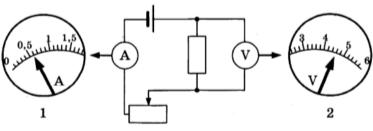

ФОРМУЛЫ

- 1) $\frac{eRB}{m}$
- 2) *eRB*
- 3) $\frac{eB}{2\pi m}$
- 4) $\frac{2\pi m}{eB}$

20

На рисунке представлен график зависимости нераспавшихся ядер изотопа полония $^{213}_{84}Po$ от времени. Определите количество распавшихся ядер полония в момент времени, равный двум периодам полураспада этого изотопа.

Otbet: _______ ·10²⁰.



- Для некоторых атомов характерной особенностью является электронный β -распад ядра. Как при электронном β -распаде меняется количество протонов и количество нейтронов в ядре? Для каждой величины определите соответствующий характер изменения.
 - 1) увеличивается
 - 2) уменьшается
 - 3) не изменяется

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Количество протонов	Количество нейтронов		

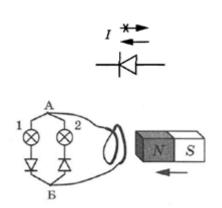
На рисунке приведена схема электрической цепи для исследования зависимости силы тока, проходящего через резистор, от напряжения на нём. Погрешности измерения приборов равны половине цены деления шкалы. Определите показания амперметра. Запишите ответ с учетом погрешности измерения.

Otbet: (\pm) A

В бланк ответов N 1 перенесите только числа, не разделяя их пробелом или другим знаком.

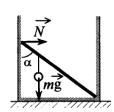
23 Необходимо экспериментально изучить зависимость периода свободных колебаний заряда конденсатора от индуктивности катушки в колебательном контуре. Какие два колебательных контура следует выбрать для проведения такого исследования?

No॒	Максимальное напряжение	Электроёмкость	Индуктивность
контура	на конденсаторе, В	конденсатора C , мк Φ	катушки L , м Γ н
1	14	6	4
2	8	5	6
3	14	6	12
4	10	10	4
5	8	12	6

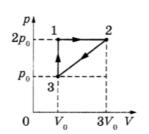

Ответ:			
--------	--	--	--

Не забудьте перенести все ответы заданий 1—23 в бланк ответов N2 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

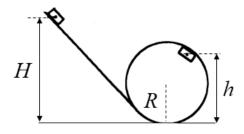

Для записи ответов на задания 24–30 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (24, 25 и т. д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

- Электрическая цепь состоит из двух лампочек и витка проволоки, как показано на рисунке. Диод пропускает ток только в одном направлении, как показано в верхней части рисунка. Какая из лампочек загорится, если к витку приближать северный полюс постоянного магнита.
 - Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.



Полное правильное решение каждой из задач 25–30 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

Невесомый стержень длиной 1 м, находящийся в ящике с гладкими дном и стенками, составляет угол $\alpha = 30^{\circ}$ с вертикалью (см. рисунок). К стержню на расстоянии 25 см от его левого конца подвешен на нити шар массой m = 2 кг. Определите модуль силы реакции опоры N, действующей на стержень со стороны левой стенки ящика.



- **26** Фотоэффект наблюдают, освещая поверхности металла светом определенной частоты. При этом задерживающая разность потенциалов равна *U*. После изменения частоты света разность потенциалов увеличилась на 1,2 В. На сколько изменилась частота падающей световой волны?
- 27 Один моль идеального одноатомного газа совершает циклический процесс, показанный на рисунке. Определите КПД цикла.

Аккумулятор замыкают сначала на резистор сопротивлением R_1 , потом на резистор сопротивлением R_2 . В обоих случаях на резисторах выделяется одинаковая мощность. При каком внешнем сопротивлении цепи выделяемая мощность будет максимальна?

- Тонкая собирающая линза с фокусным расстоянием 20 см создаёт уменьшенное в 2 раза действительное изображение предмета. Другая линза, помещённая на место первой, создаёт увеличенное в 2 раза действительное изображение предмета. Определите фокусное расстояние второй линзы.
- Небольшая шайба массой m=1 кг с высоты H=3,2 м из состояния покоя начинает скользить по гладкой горке, переходящей в «мёртвую петлю» радиусом R=1,4 м (см. рисунок). Определите силу давления шайбы на стенку петли на высоте h=2,0 м. Выполните рисунок, на котором укажите силы, действующие на шайбу, когда она находится на высоте h. Обоснуйте применимость используемых законов к решению задачи.

Проверьте, чтобы каждый ответ был записан рядом с правильным номером задания.